Linear Programming Deadlock Checking Using Partial Order Dependencies

نویسندگان

  • Victor Khomenko
  • Maciej Koutny
چکیده

Model checking based on the causal partial order semantics of Petri nets is an approach widely applied to cope with the state space explosion problem. One of the ways to exploit such a semantics is to consider (finite prefixes of) net unfoldings — themselves a class of acyclic Petri nets — which contain enough information, albeit implicit, to reason about the reachable markings of the original Petri nets. In [15], a verification technique for net unfoldings was proposed in which deadlock detection was reduced to a mixed integer linear programming problem. In this paper, we present a further development of this approach. We adopt Contejean-Devie’s algorithm for solving systems of linear constraints over the natural numbers domain and refine it, by taking advantage of the specific properties of systems of linear constraints to be solved. The essence of the proposed modifications is to transfer the information about causality and conflicts between the events involved in an unfolding, into a relationship between the corresponding integer variables in the system of linear constraints. Experimental results demonstrate that the new technique achieves significant speedups.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LP Deadlock Checking Using Partial Order Dependencies

Model checking based on the causal partial order semantics of Petri nets is an approach widely applied to cope with the state space explosion problem. One of the ways to exploit such a semantics is to consider (finite prefixes of) net unfoldings — themselves a class of acyclic Petri nets — which contain enough information, albeit implicit, to reason about the reachable markings of the original ...

متن کامل

Enabling Compositional Deadlock Checking of Component Compositions with Partial Bindings

A large number of compositional deadlock checking techniques have been proposed in order to overcome the state-explosion-problem. These approaches require all components in a composition to be fully bound. This restriction conflicts with the underlying reusability paradigm of component-based software engineering, which often requires only parts of components to be reused and allows component co...

متن کامل

Verification of bounded Petri nets using integer programming

Model checking based on the causal partial order semantics of Petri nets is an approach widely applied to cope with the state space explosion problem. One of the ways to exploit such a semantics is to consider (finite prefixes of) net unfoldings — themselves a class of acyclic Petri nets — which contain enough information, albeit implicit, to reason about the reachable markings of the original ...

متن کامل

Combining symbolic and partial order methods for model checking 1-safe Petri nets

In this work, methods are presented for model checking finite state asynchronous systems, more specifically 1-safe Petri nets, with the aim of alleviating the state explosion problem. Symbolic model checking techniques are used, combined with two partial order semantics known as net unfoldings and processes. We start with net unfoldings and study deadlock and reachability checking problems, usi...

متن کامل

Linear Programming

Model checking based on the causal partial order semantics of Petri nets is an approach widely applied to cope with the state space explosion problem. One of the ways to exploit such a semantics is to consider ((nite preexes of) net unfoldings | themselves a class of acyclic Petri nets | which contain enough information, albeit implicit, to reason about the reachable markings of the original Pe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007